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ABSTRACT
This paper studies the behaviour of the kernel estimator of the
regression function for associated data in the random left truncated
model. The uniform strong consistency rate over a real compact set
of the estimate is established. The finite sample performance of the
estimator is investigated through extensive simulation studies.
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1. Introduction

LetY be a real random variable (rv) of interest with a continuous distribution function (df)
F, and X an Rd-valued random vector of covariates with a joint df V and a joint density v.
We wish to estimate Y given X using a regression-based approach. This means looking for
a function which realises the minimum of the mean squared error (MSE). The regression
function that achieves this minimum is defined on Rd by the conditional expectation of Y
given X= x that is

m(x) := E(Y |X = x).

In the case of complete data there is a vast literature devoted to the study of the non-
parametric kernel estimator ofm(.). Far from being exhaustive, we can quote Walk (2005)
and the references therein.

Nevertheless, in many survival practical applications, it happens that one is not able
to observe a subject’s entire lifetime. The subject may leave the study, may survive to the
closing date, or may enter the study at some time after its lifetime has started. The most
current forms of such incomplete data are censorship and truncation. The model studied
here is based on the random left truncated (RLT) data, where the observation (X,Y) is
interfered by another independent rv T such that the random quantities Y, X and T are
observable only if Y ≥ T.

CONTACT Z. Guessoum zguessoum@usthb.dz, z0guessoum@hotmail.com Lab. M.S.T.D., Faculté de Math.,
U.S.T.H.B., BP 32, El Alia, 16111 Algiers, Algeria

© American Statistical Association and Taylor & Francis 2017

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10485252.2017.1303059&domain=pdf
mailto:zguessoum@usthb.dz
mailto:z0guessoum@hotmail.com


426 Z. GUESSOUM AND F. HAMRANI

The RLT model is originally appeared in astronomy and economics (Woodroofe 1985;
Chen, Chao, and Lo 1995), then extended to several domains as epidemiology, demo-
graphics, reliability testing and actuarial (Wang, Jewell, and Tsai 1986; Tsai, Jewell, and
Wang 1987). For example, in an AIDS study (Kalbfleisch and Lawless 1989), let X be
the infection time where 1 represents January 1978 and let T be the incubation time in
months for people who were infected by contaminated blood transfusions and developed
AIDS by 1 July 1986. Since the total study period is 102 months only individuals with
X+T<102 were included in the sample. Then, letting Y = 102−X yields the model
described: (Y ,T) is observed only if T<Y. Another example is that of a retirement centre
(Klein and Moeschberger 2003), where subjects are observed only if they live long enough
to enter the centre. The lifetime Y is then left truncated by the retirement house entry
age, T. People who enter the centre earlier may get better medical attention and therefore
live longer. On the other hand, people with poor health and shorter expected lifetime may
retire earlier.

In the i.i.d. case, Ould Saïd and Lemdani (2006) constructed a nonparametric kernel
estimator of the regression function m(.) under RLT model. They established its strong
uniform consistency as well as its asymptotic properties. The aim of this paper is to extend
some of their results to the case of dependent data. Two types of dependency are widely
used in literature: mixing and association.

The α-mixing condition, also called strong mixing, is the weakest among mixing
conditions known in the literature. Many stochastic processes satisfy the α-mixing con-
dition, see, for example, Doukhan (1994) and Carrasco, Chernov, Florens, and Ghysels
(2007).

For truncated data, under α-mixing condition, the strong convergence of the estimator
of the regression function defined by Ould Saïd and Lemdani (2006) is treated in Liang, Li,
and Qi (2009) and its asymptotic normality is established later in Liang (2011).

In this paper, we focus on the concept of association which has been introduced
and defined by Esary, Proschan, and Walkup (1967). A set of finite family of rv’s Y =
(Y1 . . . ,YN) is said associated if

cov( f (Y), g(Y)) ≥ 0

for all nondecreasing functions f and g from RN to R for which this covariance exists. An
infinite family is said to be associated if every finite subfamily is associated.

It is of interest to note that association and mixing define two distinct but not disjoint
classes of processes (see Doukhan and Louhichi 1999). In the linear time series framework,
the sequence Xk defined by Xk = ∑∞

j=0 ajvk−j (where (vi)−∞<i<+∞ is a sequence of i.i.d.
rvs with mean zero and variance σ 2) is associated if aj ≥ 0. On the other hand Pham and
Tran (1985) showed that (Xk)k≥0 is α-mixing under suitable conditions on aj. In particular,
Andrew (1984) showed that when (vi)−∞<i<+∞ is a sequence of i.i.d. Bernoulli rvs and
aj = ς with 0 < ς < 1

2 , the sequence (Xk)k≥0 is not α-mixing, whereas it is still associated.
For more details on the concept of association, we refer the reader to Bulinski and

Shashkin (2007). In that book, the reader can find some results and examples related to
associated random sequences and random fields.

In the complete associated data case, there is a vast literature devoted to the study of
the nonparametric kernel estimation and many papers deal with density estimation. We
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cite only a few of them as Bagai and Prakasa Rao (1995) who have obtained the strong
uniform consistency of the kernel density estimator. They also proposed an estimator
of the survival function and established its consistency. Roussas (2000) has established
the asymptotic normality of the usual kernel estimate of the marginal probability den-
sity function. Douge (2007) has stated a new exponential inequality and has derived
a uniform almost sure rate of convergence over compact sets for the kernel density
estimator.

In the incomplete data case, for associated rv there are nomuchworks done for this kind
ofmodel. Under random right censoring one, we can cite Cai and Roussas (1998) who have
established uniform strong consistency and asymptotic normality of the Kaplan–Meier
estimator. Ferrani, Ould Saïd, and Tatachak (2016) established the strong uniform con-
sistency of the kernel estimator of the underlying density function and the almost sure
convergence of a smooth kernel mode estimator under right censored model. Under RLT
model, Guessoum, Sadki, and Tatachak (2012) established the strong uniform convergence
with a rate of the Lynden-Bell estimator.

To the best of our knowledge, the problem of estimating the regression function under
association and truncation has not been addressed in the literature. The goal of this paper is
to establish the strong uniform convergence with a rate for the kernel regression estimate,
under RLT model when the variable of interest Y and the multivariate covariates X are
associated.

This paper is organised as follows. In Section 2, we recall some results stated in RLT
model with the estimators studied in the current work. In Section 3, we list the assumptions
and give our main results. In Section 4, some simulations are given. The proofs of the main
results are detailed in the appendix with some preliminary lemmas.

2. Model and estimators

Let Y be a bounded real rv defined on (�,F ,P) with a continuous df F and T a real rv
independent from Y , defined on the same probability space with a Lipschitz df G.

In the following, {Yi; i = 1, . . . ,N} and {Ti; i = 1, . . . ,N} denote, respectively, a strictly
stationary associated sequence and an i.i.d. sequence of N copies of Y and T, where the
sample size N is fixed but unknown.

In the RLT model, as mentioned above, the rv of interest Y and the truncated rv T are
observable only whenY ≥ T, whereas nothing is observed ifY <T. Thenwithout possible
confusion, we still denote {(Yi,Ti); i = 1, . . . , n} (n ≤ N) the actually observed sample.
Note that as the original sequence of interest is associated, the observed one is associated
(by property (P1) in Esary et al. 1967 ) and the observed sequence of truncation is also i.i.d.
(by Proposition 2.1 in Lemdani 2007).

Let α := P(Y ≥ T) be the probability to observe at least one pair from (Y ,T). As a
consequence of truncation, the size n of the actually observed sample is a Bin(N,α) rv. We
suppose hereafter that α > 0 otherwise no data can be observed. Since N is unknown and
n known (although random), our results will not be stated with respect to the probability
measure P (related to the N-sample) but will involve the probability P (related to the n-
sample) defined asP(.) = P(.|Y ≥ T). In the samewayE andEwill denote the expectation
operators related to P and P, respectively.
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Following Stute (1993), the joint P-distribution of an observed (Y ,T) is given by

H∗(y, t) := P{Y ≤ y,T ≤ t}
= P{Y ≤ y,T ≤ t|Y ≥ T}

= 1
α

∫ y

−∞
G(t ∧ u) dF(u),

where t ∧ u := min(t, u). The marginal distributions of Y and T, respectively, are
defined by

F∗(y) := H∗(y,∞) = 1
α

∫ y

−∞
G(u) dF(u) and

G∗(t) := H∗(∞, t) = 1
α

∫ ∞

−∞
G(t ∧ u) dF(u),

which can be estimated by

F∗
n(y) :=

1
n

n∑
i=1

I{Yi≤y} and G∗
n(t) :=

1
n

n∑
i=1

I{Ti≤t},

respectively, where IA denotes the indicator function of the set A. Let C(.) be defined by

C(y) := P{T ≤ y ≤ Y} = P{T ≤ y ≤ Y |Y ≥ T}

= 1
α
G(y)(1 − F(y)) = G∗(y)− F∗(y),

with empirical estimator

Cn(y) := 1
n

n∑
i=1

I{Ti≤y≤Yi} = G∗
n(y)− F∗

n(y).

The well-known nonparametric estimators of F and G in RLT model, proposed by
Lynden-Bell (1971) are

Fn(y) := 1 −
∏
i:Yi≤y

[
nCn(Yi)− 1
nCn(Yi)

]
,

Gn(t) :=
∏
i:Ti>t

[
nCn(Ti)− 1
nCn(Ti)

]
.

(1)

Here, for any dfW we define

aW := inf{u : W(u) > 0} and bW := sup{u : W(u) < 1} (2)

as the endpoints of the W support. Woodroofe (1985) pointed out that F and G can be
completely estimated only if

aG ≤ aF , bG ≤ bF and
∫ ∞

aF

dF
G
< ∞.
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For the unknown probability α := P(Y ≥ T), which cannot be classically estimated by
α̂n := n/N since N is unknown, He and Yang (1998) proposed the estimator

αn(y) := Gn(y)(1 − Fn(y))
Cn(y)

=: αn. (3)

The authors proved that αn does not depend on y and its value can be obtained for any
y such that Cn(y) �= 0.

Now, let {(Xi,Yi,Ti); i = 1, . . . , n} be then triplets observed among theN ones such that
Yi ≥ Ti and T independent of (X,Y) where {(Xi,Yi); i = 1, . . . , n} are supposed strictly
stationary and associated. Then we first consider the joint P-distribution of (X,Y ,T)

L∗(x, y, t) := P{X ≤ x,Y ≤ y,T ≤ t}
= P{X ≤ x,Y ≤ y,T ≤ t|Y ≥ T}

= 1
α

∫
u≤x

∫
aG≤w≤y

G(w ∧ t)F(du, dw),

the joint P-df F∗
X,Y(., .) of an observed (X,Y) is given by

F∗
X,Y(x, y) := L∗(x, y,∞) = 1

α

∫
u≤x

∫
aG≤w≤y

G(w)FX,Y(du, dw),

which gives

FX,Y(dx, dy) = α

G(y)
F∗
X,Y(dx, dy) for y ≥ aG. (4)

By integrating over y, we get the df of X

V(x) = α

∫
u≤x

∫
y≥aG

1
G(y)

F∗(du, dy).

Following Ould Saïd and Lemdani (2006), an estimator of V(x) is given by

Ṽn(x) := α

n

n∑
i=1

1
G(Yi)

I{Xi≤x}. (5)

Note that in Equation (5) and in the sequel, the sum is taken only over the i’s such that
G(Yi) �= 0. Thus, Equation (5) yields the kernel density estimator

ṽn(x) := α

nhdn

n∑
i=1

1
G(Yi)

Kd

(
x − Xi

hn

)
, (6)

where Kd : Rd → R is a smooth kernel function and hn is a positive bandwidth sequence
that tends to zero as n → ∞. Observe that the regression functionm(x) can be written as

m(x) = ψ(x)
v(x)

, (7)

where ψ(x) = ∫
R
yfX,Y(x, y) dy and fX,Y(., .) is the joint density of (X,Y). Then, assuming

that ṽn(x) > 0 for all x ∈ Rd, it is well known that the kernel estimator of the regression
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functionm(x) under RLT model is given by

m̃n(x) := ψ̃n(x)
ṽn(x)

,

where

ψ̃n(x) := α

nhdn

n∑
i=1

Yi

G(Yi)
Kd

(
x − Xi

hn

)
. (8)

As in practice α andG are usually unknown, we replace them by their consistent estimators
Gn and αn defined in Equations (1) and (3), respectively. Thus by plug-in method one can
define the feasible kernel estimate form(.) by

m̂n(x) := ψ̂n(x)
v̂n(x)

, (9)

where

ψ̂n(x) := αn

nhdn

n∑
i=1

Yi

Gn(Yi)
Kd

(
x − Xi

hn

)
,

v̂n(x) := αn

nhdn

n∑
i=1

1
Gn(Yi)

Kd

(
x − Xi

hn

)
.

3. Assumptions andmain results

Throughout this paper we assume that aG < aF and bG ≤ bF . LetD be a compact set which
is included in� = {x ∈ Rd/v(x) > δ > 0} for a real δ > 0, and let us define

θi,j :=
d∑

k=1

d∑
l=1

cov(Xi,k,Xj,l)+ 2
d∑

k=1

cov(Xi,k,Yj)+ cov(Yi,Yj), (10)

where Xi,k is the k-th component of Xi. We will make use of the following assumptions
gathered here for easy reference.

(H) The bandwidth hn satisfies: hn → 0, nhdn → +∞ and log5 n/nhdn → 0 as n → +∞,
(A)

∫
R
(dF(z)/G2(z)) < +∞,

(K1) The kernel Kd is a bounded probability density with compact support,
(K2)

∫
Rd ziKd(z) dz = 0 for all i = 1, . . . , d and

∫
Rd |zi11 · · · zidd |Kd(z) dz < +∞ for

i1 + · · · + id = 2,
(K3)

∫
Rd |z1 + · · · + zd|K2

d(z) dz < +∞ and
∫
Rd K

2
d(z) dz < +∞,

(K4) Kd is Hölder continuous with exponent β > 0,
(R) The covariance term defined by ρ(s) := sup|i−j|≥s θi,j for s>0 satisfies ρ(s) ≤

γ0e−γ s for some positive constants γ0 and γ ,
(D1) The function ψ(.) is bounded, twice differentiable with supx∈D |(∂kψ/∂xi∂xk−1

j )

(x)| < +∞ for i, j = 1, . . . , d and k=1,2,
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(D2) The function ψ1(x) :=
∫

R
(y2/G(y))F(x, dy) is bounded and continuously differen-

tiable with supx∈D |(∂ψ1/∂xi)(x)| < +∞ for i = 1, . . . , d,
(D3) The probability density v(.) is bounded and twice differentiable with supx∈D |(∂kv/

∂xi∂xk−1
j )(x)| < +∞ for i = 1, . . . , d and k=1,2,

(D4) The conditional joint density v∗
i,j of (Xi,Xj) exists and supx1,x2∈D |v∗

i,j(x1, x2)| < +∞.

Remark 3.1: Assumptions H, K1, K4 and D1 are very common in functional estimation
both in independent and dependent cases. Assumptions A and R imply assumptions of
Guessoum et al. (2012) and are needed, among other, to use their results. Furthermore,
assumption R quantifies a geometric decay of the covariance terms needed to establish
a uniform almost sure convergence type. This condition is similar to the one used in
Bulinski (1996), Douge (2007) and Doukhan and Neumann (2007) (without covariate).
Assumptions D3 andD4 are technical and are used to compute covariances.

The following two theorems give the uniform asymptotic expression of the fluctuation
terms for the two estimators ψ̃n(x) and ṽn(x) defined respectively in Equations (8) and (6).

Theorem 3.1: Under assumptions K1–K4, D1–D2, D4, R and H we have

sup
x∈D

|ψ̃n(x)− E(ψ̃n(x))| = O

(√
log n
nhdn

)
P - a.s, as n → +∞.

Theorem 3.2: Under assumptions K1–K4, D3–D4, R andH we have

sup
x∈D

|ṽn(x)− E(ṽn(x))| = O

(√
log n
nhdn

)
P - a.s, as n → +∞.

The proofs of Theorem 3.1 and Theorem 3.2 are mainly based on a Bernstein-type
inequality due to Doukhan and Neumann (2007) recalled in Lemma A.1 in the appendix.

Now, to state our main result observe that from Equations (7) and (9) we have

m̂n(x)− m(x) = ψ̂n(x)
v̂n(x)

− ψ(x)
v(x)

=
(
ψ̂n(x)
v̂n(x)

− ψ̃n(x)
v̂n(x)

)
+
(
ψ̃n(x)
v̂n(x)

− E(ψ̃n(x))
v̂n(x)

)

+
(
E(ψ̃n(x))
v̂n(x)

− ψ(x)
v̂n(x)

)
+ ψ(x)

v(x)− v̂n(x)
v̂n(x)v(x)

, (11)

then application of Theorem 3.1 and Theorem 3.2 leads to

Theorem 3.3: Under assumptions A, K1–K4, D1–D4, R andH we have

sup
x∈D

|m̂n(x)− m(x)| = O

{√
log n
nhdn

∨
(
log log n

n

)θ
∨ h2n

}
P - a.s, as n → ∞,

where 0 < θ < (γ/(2γ + 6 + 3κ/2)) for any real κ > 0.
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Remark 3.2: The rate obtained by Ould Saïd and Lemdani (2006) in the independent
case for d=1 (their Theorem 4.1) is O(

√
log n/n1−2λh2n ∨ hn) where λ is defined in their

assumptionsA1 andA2. If we compare it with our result, we find an added term depending
on θ , which is due to the association effect. Note that our rate is slightly better than theirs
due to the symmetric condition on the kernel K in our assumption K2. In α-mixing case,

Liang et al. (2009) obtained the rate O{
√
log n/nhdn ∨ ŵn ∨ hpn} where p denotes the order

of the kernel K and ŵn quantifies the α-mixing effect. Then if we take p=2 (symmetric
kernel), their rate becomes similar to ours.

4. Simulations study

The main purpose of this section is to investigate the finite sample performance of the
estimator m̂n(x) in the case d = 1, for some particular regression functionsm(x). For that,
we generate data as follows

(1) The covariate X:
• Generate N+1 i.i.d.N (0, 1) rv’s {Wt ; t = −1, 0, . . . ,N − 1}.
• Given Wt , generate the associated sequence {Xt , t = 1, . . . ,N} by Xt =

exp[12 (Wt−1 + Wt−2)]. This model comes from Chaubey, Dewan, and Li (2011)
where it is shown that the autoregressif model of order 2 defined by St = Wt−1/2 +
Wt−2/2 is associated. Furthermore, as the exponential is a nondecreasing function
so, from property (P4) of Esary et al. (1967), Xt are associated variables.

(2) The interest variable Y :
• Generate N i.i.d. rv’s {εt ; t = 1, . . . ,N} with distribution specified below.
• Set Yt = m(Xt)+ εt withm(.) the regression function.

(3) The truncated variable T:
• Generate independently the i.i.d. rv’s {Tt} with distributionN (μ, 1) (μ is adapted

in order to obtain different values of truncation).
(4) The observed data:

• We keep the n observations {(Xi,Yi,Ti), i = 1, . . . , n} of the triplet of rv’s (X,Y ,T)
satisfying the condition Yi ≥ Ti.

The supremum is taken over a compact set D = [a, b] for which we consider a subdivi-
sion� defined by

� = {a0 = a, x1, . . . , aJ = b}, J ≥ 1,

and we calculate the values of the estimator m̂n(x), at each point aj of � by choosing a
Gaussian kernel K and a bandwidth hn = O((log n/n)1/3).

This section is divided in three parts. In the first one, we focus on the performance
of the estimator when the model m(x) is linear, for different values of α (the rate related
to the (no) truncation) and n (the size of the observed sample). In the second part, we
compare the performance of the estimator by considering two different distributions of the
errors εi and thereafter we propose to compare m̂n(x) to the restricted conditional mean
survival time (RCMST) estimate. Finally some nonlinear regression functions are chosen
for highlighting the robustness of our estimator.
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4.1. Performances of m̂n(.) under linearmodel

We generate the data with observed sample sizes n=50, 100 and 300, respectively, from
the linear model given by

Yi = 2Xi + 1 + εi, i = 1, . . . ,N,

where εi comes fromN (0, 0.2). Hence, the true underlying regression function ism(x) =
2x + 1. In Tables 1 and 2, we take α ≈ 60% and 80% (obtained for μ = 2.5 and μ = 2,
respectively) and we report the bias, variance and MSE of the estimator m̂n at the bounds
x=0 and x=2 and at a middle point x=1, based on B = 1000 replications.

From Tables 1 and 2 it can be seen that:

• The estimator does not have the same behaviour at the bounds of the support and inside
this one. In particular in the left we notice, as it is well known, that the estimator has
boundary effects which may be attributed to the fact that the support of the kernel
exceeds the available range of data.

• Each of the MSE, bias and variance decrease when n increases, so the quality of the
estimator is better for high observed sample sizes which is confirmed by Figure 1 , where
we plotm(.) and its estimator m̂n(.) with α ≈ 80% for n=50, 100 and 300.

Hereafter, to take into account all points in D, we calculate the MSE along the inter-
val D = [0, 2] by taking the median over x ∈ [0, 2]. The results are given in Table 3
for α ≈ 60%, 70%, and 80% (in this case the different values of α are obtained for the
same parameter μ = 2.5, in order to make some comparisons using the same law for the
simulated variables) for n=50, 100 and 300.

As the MSE gives a pointwise error, we extend the study to the global behaviour of
the estimator by using the mean integrated squared error (MISE). The results are given
in Table 4 with α ≈ 60%, 70% and 80% (obtained for μ = 2.5) for n=50, 100 and 300.

Tables 3 and 4 insure that the performance of the estimator is better for high sample
size and great value of α. This is also confirmed by Figure 2, where we plot m(.) and its
estimator m̂n(.) with n=300 for α ≈ 60%, 70% and 80%.

Table 1. MSE, bias and variance of m̂n for α ≈ 60%.

n= 50 n= 100 n= 300

MSE Bias Var MSE Bias Var MSE Bias Var

x = 0 0.3955 0.6028 0.0321 0.2754 0.5053 0.0201 0.1547 0.3787 0.0114
x = 1 0.0023 −0.0171 0.0020 0.0008 −0.0117 0.0007 0.0002 −0.0059 0.0002
x = 2 0.0293 −0.0998 0.0193 0.0084 −0.0191 0.0080 0.0027 −0.0113 0.0026

Table 2. MSE, bias and variance of m̂n for α ≈ 80%.

n= 50 n= 100 n= 300

MSE Bias Var MSE Bias Var MSE Bias Var

x = 0 0.2073 0.4212 0.0299 0.1182 0.3250 0.0126 0.0901 0.2971 0.0018
x = 1 0.0021 −0.0121 0.0019 0.0009 −0.0100 0.0008 0.0002 −0.0046 0.0002
x = 2 0.0102 −0.0678 0.0056 0.0044 −0.0324 0.0034 0.0019 −0.0223 0.0014
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Figure 1. m(.) and m̂n(.)with α ≈ 80% and n = 50, 100 and 300, respectively.

Figure 2. m(.) and m̂n(.)with n= 300 and α ≈ 60%, 70% and 80%, respectively.

Table 3. MSE’s median of m̂n.

α (%) n= 50 n= 100 n= 300

60 0.0033 0.0012 3.0539×10−4

70 0.0028 0.0009 3.0283×10−4

80 0.0027 0.0006 2.7858×10−4

Table 4. The MISE of m̂n.

α (%) n= 50 n= 100 n= 300

60 0.0539 0.0305 0.0228
70 0.0341 0.0284 0.0128
80 0.0298 0.0198 0.0127

4.2. Some comparisons

• We compare the performances of m̂n(x), via the MISE, based on B=1000 replications,
for twodifferent distributions of the error εi by generating the datawith observed sample
sizes n=100 and 300, respectively, from the linear model given by

Yi = Xi + εi, i = 1, . . . ,N,

where (a) εi comes fromN (0, 1) and (b) εi comes from St(2).

In Table 5, it can be seen that the estimation is most robust when the error distribution
is normal. One of the reasons may be that in distribution (b) the errors εi are heavy-tailed.

• Using the same model with normal error, we compare m̂n(x) to the RCMST estimate
defined below. Recall that in the case of complete and positive data the regression
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Table 5. The MISE of m̂n.

α (%) n Distribution (a) Distribution (b)

60 100 0.0591 0.9509
300 0.0281 0.8092

70 100 0.0398 0.9291
300 0.0194 0.7523

80 100 0.0368 0.9022
300 0.0131 0.6993

function can be written as a conditional mean survival time that is

E(Y |X = x) =
∫ +∞

0
S(y|x) dy,

where S(y|x) is the conditional survival function of Y given X= x. Under the RLT
model, we define the RCMST as

RCMST =
∫ bF

aF
S(y|x) dy =

∫ bF

aF
[1 − F(y|x)] dy,

whereF(y|x) is the conditional df ofY givenX= x and aF , bF are defined inEquation (2).
Then we propose to estimate RCMST by

m̄n(x) =
∫ bF

aF
[1 − Fn(y|x)] dy,

where Fn(y|x) is the estimator of F(y|x) given in Lemdani, Ould Saïd, and Poulin
(2009) by

Fn(y|x) =
∑n

i=1 G
−1
n (Yi)Kd

(
x−Xi
hn

)
K0

(
y−Yi
hn

)
∑n

i=1 G
−1
n (Yi)Kd

(
x−Xi
hn

) ,

with K0 a smooth df defined on R.

In order to compare the performance of the two estimators m̂n(x) and m̄n(x) through
theirMISE, we generate the datawith observed sample sizes 100 and 300, respectively, from
the model given by

Yi = Xi + εi, i = 1, . . . ,N,

where εi ∼ N (0, 1).
In Table 6, we take α ≈ 60% and 80% (obtained for μ = 1 ) and we report the MISE of

m̂n(x) and m̄n(x) based on B=1000 replications. We notice that the two estimators have
similar performance which is confirmed by Figure 3 where we plot the true regression
function m(x) = x together with the estimators m̂n(x) and m̄n(x) for α ≈ 80%, n=100
and 300.
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Table 6. The MISE of m̂n and m̄n(x).

α (%) n m̂n(x) m̄n(x)

60 100 0.0585 0.0591
300 0.0279 0.0281

80 100 0.0368 0.0365
300 0.0131 0.0132

Figure 3. m(.), m̂n(.) and m̄n(.)with α ≈ 80% and n= 100, 300, respectively.

Figure 4. Exponential, sinus, and parabolic with n= 300 and α ≈ 80%.

4.3. Nonlinearmodel

We consider the case of nonlinear regression by choosing the following three models:

m(x) = exp(x)+ εi, exponential,

m(x) = sin
(
πx + 1

2

)
+ εi, sinus,

m(x) = x2 + x + 1 + εi, parabolic,

with D = [0, 2] for exponential and parabolic cases and D = [0.4, 1.4] for sinus case. The
error εi is taken normal, the size n equal to 300 and α equal to 80% (Figure 4).

Here again, we can see the good performance of our estimator for nonlinear regression
functions.
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5. Conclusion

This paper has established the uniform strong consistency along with a rate of the ker-
nel regression estimator over a real compact, when the variable of interest is subject
to left truncation under association hypothesis. In doing so, a Bernstein-type inequal-
ity due to Doukhan and Neumann (2007) has been used. A large simulation study was
conducted through which our estimator performance was highlighted in spite of well-
known boundary effects of kernel estimation. Alternative methods such as local linear and
k-nearest neighbour will be the subject of future research. These methods could improve
the bias and the boundary effects. Comparisons of the studied estimator with the RCMST
estimate have been made. Regarding this latter estimator, another possible estimation
procedure is to consider the conditional product limit estimator defined in Akritas and
LaValley (2005), under the assumption that Y is conditionally independent of T given X,
for which theoretical results do not exist for associated data. Many other results remain
to be established as asymptotic normality and more generally asymptotic behaviour of
nonparametric functional estimator.
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Appendix 1. Proofs

First, let

Zi(x) := Z(Xi,Yi; x) = αYi

G(Yi)
Kd

(
x − Xi

hn

)
− E

(
αYi

G(Yi)
Kd

(
x − Xi

hn

))
. (A1)

We recall in the following lemma an exponential inequality stated inDoukhan andNeumann (2007),
used in the proofs of Theorems 3.1 and 3.2.

Lemma A.1 (Doukhan and Neumann 2007, Theorem 1, p. 880): Suppose thatX1, . . . ,Xn are real-
valued rvs with zero mean, defined on a probability space (�,A,P). We assume that there exist
constants K,M, L1, L2 < +∞,μ, ν ≥ 0 and a non-increasing sequence of real coefficients (δ(n))n≥0
such that, for all u-tuples (s1, . . . , su) and all v-tuples (t1, . . . , tv)with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤
tv ≤ n, the following inequalities are fulfilled:

(a) |cov(Xs1 · · ·Xsu ,Xt1 · · ·Xtv )| ≤ K2Mu+v−2((u + v)!)νuvδ(t1 − su),
(b)

∑∞
s=0(s + 1)k(δ(s)) ≤ L1Lk2(k!)

μ ∀k ≥ 0,
(c) E(|Xt|k) ≤ (k!)νMk ∀k ≥ 0.

Then, for all t ≥ 0

P

( n∑
i=1

Xi ≥ t

)
≤ exp

(
− t2/2

An + B1/(μ+ν+2)
n t(2μ+2ν+3)/(μ+ν+2)

)
, (A2)

where An can be chosen as any number greater than or equal to σ 2
n := Var(

∑n
i=1 Xi) and Bn = 2(K ∨

M)L2(24+μ+νnK2L1/An ∨ 1).

Throughout the proofs, we denote by c (different) constants whose values are allowed to change.
The following two lemmas are used to show that the process Zi(x) satisfies the conditions of
Lemma A.1, that will allow us to use the exponential inequality (A2). In the first lemma, to lighten
the notations, we note Zi(x) by Zi.

Lemma A.2: Under assumptionR, there exist constants K,M, L1, L2 < +∞,μ, λ ≥ 0 such that for all
(s1, . . . , su) ∈ Nu and all (t1, . . . , tv) ∈ Nv with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n, we have

(a) cov(Zs1 · · ·Zsu ,Zt1 · · ·Ztv ) ≤ K2Mu+v−2((u + v)!)λuv(ρ(t1 − su))d/(2d+2),
(b)

∑∞
s=0(s + 1)k(ρ(s))d/(2d+2) ≤ L1Lk2(k!)

μ ∀k ≥ 0,
(c) E(|Zi|k) ≤ (k!)λMk ∀k ≥ 0.

Proof: Following Bulinski and Shashkin (2007), let us define for a function�m : Rm(d+1) → R, the
partial Lipschitz constants of�m, that is

Lipi(�m)

:= sup
zi �=z′i

|�m(z1, . . . , zi−1, zi, zi+1, . . . , zm(d+1))−�m(z1, . . . , zi−1, z′i , zi+1, . . . , zm(d+1))|
|zi − z′i|

,
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where zj ∈ R. For a function � : Rm → R, let Lip(�) denote the Lipschitz modulus of continuity
of�, that is

Lip(�) = sup
x �=y

|�(x)−�(y)|
‖x − y‖1 ,

where ‖x‖1 = |x1| + · · · + |xm|.
Set �u = ∏su

i=s1 Zi and �v = ∏tv
j=t1 Zj. Then from one hand, by using Theorem 5.3 in Bulinski

and Shashkin (2007) under the Lipschitz condition on Kd and G and from Equation (10), we have

cov(Zs1 · · ·Zsu ,Zt1 · · ·Ztv ) ≤
su∑

i=s1

wv∑
j=w1

Lipi(�u) Lipj(�v)θi,j.

As Y is bounded, and from the definition of Lipi(.) given above, we get

Lipi(�u) ≤ C1

hn

(
c

G(aF)

)u−1
‖Kd‖u−1

∞ ,

Lipi(�v) ≤ C1

hn

(
c

G(aF)

)v−1
‖Kd‖v−1

∞ ,

where C1 = Max{Lip(Kd)(c/G(aF)), ‖Kd‖∞(1/G(aF)+ Lip(G)(c/G2(aF)))}. Therefore, the sta-
tionarity and assumption R give

cov(Zs1 · · ·Zsu ,Zt1 · · ·Ztv ) ≤ C2
1

h2n

(
c

G(aF)

)u+v−2
‖Kd‖u+v−2

∞ uvρ(t1 − su)

≤ C2
1

(
c‖Kd‖∞
G(aF)

)u+v−2 1
h2n

uvρ(t1 − su). (A3)

On the other hand, under assumptions K1 andD4 we have

E

(
α2YiYj

G(Yi)G(Yj)
Kd

(
x − Xi

hn

)
Kd

(
x − Xj

hn

))
≤ c

(
1

G(aF)

)2
h2dn (A4)

and

E
(
αYi

G(Yi)
Kd

(
x − Xi

hn

))
≤ c

G(aF)
hdn. (A5)

Then from Equations (A4) and (A5) we deduce

cov(Zs1 · · ·Zsu ,Zt1 · · ·Ztv ) = E(Zs1 · · ·ZsuZt1 · · ·Ztv )− E(Zs1 · · ·Zsu)E(Zt1 · · ·Ztv )

≤ c
(

1
G(aF)

)u+v−2
h2dn . (A6)

By combining Equations (A3) and (A6), we get

cov(Zs1 · · ·Zsu ,Zt1 · · ·Ztv ) ≤
(
c‖Kd‖∞
G(aF)

)u+v
hdnuv(ρ(t1 − su))d/(2d+2). (A7)

Choosing K = c‖Kd‖∞/G(aF)
√
hdn, M = c‖Kd‖∞/G(aF) and λ = 0 we get the result in item (a).

To prove the item (b), we follow the same steps as in the proof of Proposition 8 of Doukhan and
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Neumann (2007). For all k ≥ 0, under Assumption R, we have
∞∑
s=0
(s + 1)k(ρ(s))d/(2d+2) ≤

∞∑
s=0
(s + 1) · · · (s + k)e−γ sd/(2d+2)

= dk

dtk

(
1

1 − t

)∣∣∣∣∣
t=e−γ d/(2d+2)

= (k)!
(

1
1 − e−γ d/(2d+1)

)k+1
.

Thus by choosing μ = 1 and L1 = L2 = 1/(1 − e−γ d/(2d+2)) we get the result in item (b). For the
proof of item (c), we have for all k ≥ 0

E(|Zi|k) ≤
(
c‖Kd‖∞
G(aF)

)k

= (k!)λMk,

where λ andM have the same values chosen to get result (a). �

Lemma A.3: Under assumptionsH, K1–K3, R and D1–D2, we have

σ 2
n := Var

( n∑
i=1

Zi(x)

)
= O(nhdn).

Proof: We have

σ 2
n = Var

( n∑
i=1

Zi(x)

)
= (nhdn)

2
Var(ψ̃n(x)− E(ψ̃n(x))) = n2h2dn Var(ψ̃n(x))

= n2h2dn Var

(
1

nhdn

n∑
i=1

αYi

G(Yi)
Kd

(
x − Xi

hn

))

= nVar
(
αY1

G(Y1)
Kd

(
x − X1

hn

))
+

n∑
i=1

n∑
j=1

j�=i

Cov
(
αYi

G(Yi)
Kd

(
x − Xi

hn

)
,
αYj

G(Yj)
Kd

(
x − Xj

hn

))

=: V + CV .

On the one hand, we have

V = n
[
E
(
α2Y2

1
G2(Y1)

K2
d

(
x − X1

hn

))
− E2

(
αY1

G(Y1)
Kd

(
x − X1

hn

))]

=: n(V1 − V2).

Using Equation (4) and a change of variable, we get

V1 =
∫

Rd

∫
R

α2y2

G2(y)
K2
d

(
x − u
hn

)
F∗(du, dy)

=
∫

Rd

∫
R

αy2

G(y)
K2
d

(
x − u
hn

)
F(du, dy)

≤ hdn

∫
Rd

K2
d(z)ψ1(x − zhn) dz.
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A Taylor expansion gives

ψ1(x − zhn) = ψ1(x)−hn
(
z1
∂ψ1

∂z1
(x∗)+ · · · + zd

∂ψ1

∂zd
(x∗)

)
,

where x∗ is between x − hnz and x. Then under assumptions H, K3 and D2 we have V1 = O(hdn).
In the same way, we get

V2 =
[∫

Rd

∫
R

αy
G(y)

Kd

(
x − u
hn

)
F∗(du, dy)

]2

=
[∫

Rd

∫
R

yKd

(
x − u
hn

)
F(du, dy)

]2

=
[
hdn

∫
Rd

Kd(z)ψ(x − zhn) dz
]2

.

Therefore under AssumptionsH, K1–K2 andD1, a Taylor expansion givesV2 = O(h2dn ). ThusV =
O(nhdn). On the other hand, from Equation (A6) we can write

Cov
(
αYi

G(Yi)
Kd

(
x − Xi

hn

)
,
αYj

G(Yj)
Kd

(
x − Xj

hn

))
= O(h2dn ). (A8)

To evaluate CV , we use a technique developed in Masry (1986). Let us define

B1 = {(i, j); 1 ≤ |i − j| ≤ ϑn},
B2 = {(i, j);ϑn + 1 ≤ |i − j| ≤ n − 1},

where ϑn = o(n). Then

CV =
n∑

i=1

∑
j∈B1

Cov
(
αYi

G(Yi)
Kd

(
x − Xi

hn

)
,
αYj

G(Yj)
Kd

(
x − Xj

hn

))

+
n∑

i=1

∑
j∈B2

Cov
(
αYi

G(Yi)
Kd

(
x − Xi

hn

)
,
αYj

G(Yj)
Kd

(
x − Xj

hn

))

=: CV1 + CV2.

From Equation (A8) we get

CV1 = O(ϑnnh2dn ). (A9)
By Assumption R and Equation (A7) we obtain

CV2 ≤ cnhdn
∑
j∈B2

e−γ d/(2d+2)|i−j| ≤ cnhdn

∫ n

ϑn

e−(γ d/(2d+2))u du

= O(nhdne
−γϑnd/(2d+2)). (A10)

Now choosing ϑn = O(hν−d
n ) with 0 < ν < d, Equations (A9) and (A10) become

CV1 = O(nhdnh
ν) = o(nhdn),

CV2 = O(nhdne
−(γ d/(2d+2))Chν−d

n ) = o(nhdn).

Finally CV = o(nhdn) and σ 2
n = O(nhdn). �
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Proof of Theorem 3.1: Note that

ψ̃n(x)− E(ψ̃n(x)) = 1
nhdn

n∑
i=1

Zi(x). (A11)

We use a classical technique which consists in covering the compactD by a finite number pn of balls
Bk(xk, adn) centred at xk = (xk,1, . . . , xk,d), for k ∈ 1, . . . , pn and where adn = n−1/2βh1+d/2β .

Then for all x ∈ D, there exists k ∈ 1, . . . , pn such that ‖x − xk‖ ≤ adn. As D is bounded, there
exists a constantM′ > 0 such that

pnadn ≤ M′ ⇒ pn ≤ M′

adn
⇒ pn = O((adn)

−1).

Hence we consider the following decomposition:

sup
x∈D

|ψ̃n(x)− E(ψ̃n(x))| = sup
x∈D

∣∣∣∣∣ 1
nhdn

n∑
i=1

Zi(x)− 1
nhdn

n∑
i=1

Zi(xk)+ 1
nhdn

n∑
i=1

Zi(xk)

∣∣∣∣∣
≤ max

1≤k≤pn
sup
x∈Bk

1
nhdn

n∑
i=1

|Zi(x)− Zi(xk)| + max
1≤k≤pn

1
nhdn

∣∣∣∣∣
n∑
i=1

Zi(xk)

∣∣∣∣∣
=: S1 + S2. (A12)

First, we have under assumption K4 andH,

1
nhdn

n∑
i=1

|Zi(x)− Zi(xk)| ≤ 1
nhdn

n∑
i=1

α|Yi|
G(Yi)

∣∣∣∣Kd

(
x − Xi

hn

)
− Kd

(
xk − Xi

hn

)∣∣∣∣
+ 1

hdn
E
(
α|Yi|
G(Yi)

∣∣∣∣Kd

(
x − Xi

hn

)
− Kd

(
xk − Xi

hn

)∣∣∣∣
)

≤ 2αc
nhdnG(aF)

n
∥∥∥∥x − X1

hn
− xk − X1

hn

∥∥∥∥
β

= c
hdn

.
‖x − xk‖β

hβn

≤ c(adn)β

hd+βn
= O

⎛
⎝ 1√

nhdn

⎞
⎠ .

So, we get

S1 = O

⎛
⎝ 1√

nhdn

⎞
⎠ . (A13)

We now turn to the term S2 in Equation (A12). The use of Lemma A.2 shows that Zi(x) defined in
Equation (A1) satisfies the conditions of Lemma A.1 with δ(s) = (ρ(s))d/(2d+2) and we have

P

( n∑
i=1

Zi(xk) ≥ ε

)
≤ exp

(
− ε2/2

An + B1/(μ+λ+2)
n ε(2μ+2λ+3)/(μ+λ+2)

)
, (A14)

where An can be chosen such that An ≤ σ 2
n with σ 2

n := Var(
∑n

i=1 Zi(x)) and Bn = 2cL2(24+μ+λ

nchdnL1/An ∨ 1). From Lemma A.3 we have An = O(nhdn). Furthermore, following the proof
of Lemma A.2, we have μ = 1, λ = 0, L1 = L2 = 1/(1 − e−γ d/(2d+2)) and Bn = O(1), then in
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Equation (A14) we get

P

( n∑
i=1

Zi(xk) ≥ ε

)
≤ exp

(
− ε2/2
cnhdn + ε5/3

)
. (A15)

Next, if we choose ε = ε0
√
log n/nhd for all ε0 > 0 then from Equation (A15) we have

P

(
max

1≤k≤pn

∣∣∣∣∣
n∑

i=1
Zi(xk)

∣∣∣∣∣ > nhdnε0

√
log n
nhd

)
≤

pn∑
k=1

P

(∣∣∣∣∣
n∑
i=1

Zi(xk)

∣∣∣∣∣ > nhdnε0

√
log n
nhd

)

≤ 2pn exp

⎛
⎜⎝−

ε20
2 n

2h2dn
log n
nhd

cnhdn + ε
5
3
0 (nhdn)5/3

(
log n
nhdn

)5/6
⎞
⎟⎠

≤ 2M′(adn)
−1 exp

⎛
⎜⎝−

ε20
2 log n

c + ε
5/3
0

(
log5 n
nhdn

)1/6
⎞
⎟⎠

= 2M′(adn)
−1n−ε20/2/c+ε5/30 (log n5/nhdn)1/6

= 2M′n1/2βh−1−d/2βn−cε20

= 2M′(nh)−1−d/2βn−cε20+1+(d+1)/2β

= 2M′ 1√
(nh)(2β+d)/β

n−cε20+1+(d+1)/2β . (A16)

By assumption H and for a suitable choice of ε0 ( i.e. ε20 > (1/C)(2 + (d + 1)/β)) the last term in
Equation (A16) is the general term of a convergent series. Finally, applying Borel–Cantelli ’s lemma
to Equation (A16) gives

S2 = O

(√
log n
nhdn

)
. (A17)

Thus combining Equations (A13), (A17) and (A12) ends the proof. �

Proof of Theorem 3.2: We follow step by step the proof of Theorem 3.1 with

Zi(x) = α

G(Yi)
Kd

(
x − Xi

hn

)
− E

(
α

G(Yi)
Kd

(
x − Xi

hn

))
,

we get the result. �

Lemma A.4: Under assumptions A, R and K1 we have

sup
x∈D

|ψ̂n(x)− ψ̃n(x)| = O

[(
log log n

n

)θ]
P - a.s, as n → +∞.
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Proof:

|ψ̂n(x)− ψ̃n(x)| =
∣∣∣∣∣ 1
nhdn

n∑
i=1

[
αn

Gn(Yi)
− α

G(Yi)

]
YiKd

(
x − Xi

hn

)∣∣∣∣∣
≤ 1

nhdn

n∑
i=1

∣∣∣∣αn − α

Gn(Yi)
− α

Gn(Yi)G(Yi)
(Gn(Yi)− G(Yi))

∣∣∣∣ |Yi|Kd

(
x − Xi

hn

)

≤
{

|αn − α|
Gn(aF)

+ α

Gn(aF)G(aF)
sup
y≥aF

|Gn(y)− G(y)|
}

1
nhdn

n∑
i=1

|Yi|Kd

(
x − Xi

hn

)
.

By using Markov’s inequality, assumption K1 and for ε > 0 we get

P

(
1

nhdn

n∑
i=1

|Yi|Kd

(
x − Xi

hn

)
≥ ε

)
≤

E
(

1
nhdn

∑n
i=1 |Yi|Kd(

x−Xi
hn )

)
ε

≤ c
εhdn

E
(
Kd

(
x − X1

hn

))

= c
εhdn

∫
Rd

Kd

(
x − u
hn

)
v∗(u) du

= cε−1
∫
Rd

Kd(z)v∗(x − hnz) dz

= O(1).

Now, by following Ould Saïd and Tatachak (2009), Guessoum et al. (2012) and using assumptionsA
and R we get

sup
y≥aF

|Gn(y)− G(y)| = O

[(
log log n

n

)θ]

and

|αn − α| = O

[(
log log n

n

)θ]
.

Finally, since Gn(aF)
P−a.s.−→ G(aF) and (1/nhdn)

∑n
i=1 |Yi|Kd((x − Xi)/hn) = O(1), we deduce the

result. �

Lemma A.5: Under assumptions K1–K2, D1 andH we have

sup
x∈D

|E(ψ̃n(x))− ψ(x)| = O(h2n) a.s, as n → ∞.

Proof:

E(ψ̃n(x))− ψ(x) = E

(
1

nhdn

n∑
i=1

αYi

G(Yi)
Kd

(
x − Xi

hn

))
− ψ(x)

= 1
hdn

∫
Rd

∫
R

αy
G(y)

Kd

(
x − u
hn

)
F∗(du, dy)− ψ(x)

= 1
hdn

∫
Rd

∫
R

yKd

(
x − u
hn

)
F(du, dy)− ψ(x)

=
∫

Rd
Kd(z) (ψ(x − zhn)− ψ(x)) dz.
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Under assumptions K1–K2, andD1, a Taylor expansion finishes the proof. �

Lemma A.6: Under assumptions K1–K4, A, R, D3–D4 andH

sup
x∈D

|v̂n(x)− v(x)| = O

{√
log n
nhdn

∨
(
log log n

n

)θ
∨ h2n

}
P -a .s, as n → ∞,

where 0 < θ < γ/(2γ + 6 + 3/2κ) for any real κ > 0.

Proof: We have

sup
x∈D

|v̂n(x)− v(x)| ≤ sup
x∈D

|v̂n(x)− ṽn(x)| + sup
x∈D

|ṽn(x)− E(ṽn(x))| + sup
x∈D

|E(ṽn(x))− v(x)|.

Using the same steps and arguments as in the proof of Lemma A.4 we get under assumptions A
and K1

sup
x∈D

|v̂n(x)− ṽn(x)| = O

[(
log log n

n

)θ]
. (A18)

Furthermore, under assumptions K1–K2, D3 andH and using a Taylor expansion, we get

sup
x∈D

|E(ṽn(x))− v(x)| = O(h2n). (A19)

By combining Equations (A18), (A19) and Theorem 3.2 we end the proof. �

Proof of Theorem 3.3: As already mentioned in Section 3, let δ > 0 such that infx∈D |v(x)| > δ,
hence we have from Equation (11)

sup
x∈D

|m̂n(x)− m(x)| ≤ 1
inf
x∈D(v̂n(x))

{
sup
x∈D

|ψ̂n(x)− ψ̃n(x)| + sup
x∈D

|ψ̃n(x)− E(ψ̃n(x))|

+ sup
x∈D

|E(ψ̃n(x))− ψ(x)| + supx∈D |ψ(x)|
infx∈D v(x)

sup
x∈D

|v̂n(x)− v(x)|
}

≤ 1
δ − supx∈D |v̂n(x)− v(x)|

{
sup
x∈D

|ψ̂n(x)− ψ̃n(x)| + sup
x∈D

|ψ̃n(x)

− E(ψ̃n(x))| + sup
x∈D

|E(ψ̃n(x))− ψ(x)|

+ δ−1 sup
x∈D

|ψ(x)| sup
x∈D

|v̂n(x)− v(x)|
}
.

Then by using Theorem 3.1, Lemma A.4, Lemma A.5 and Lemma A.6 we get the result. �
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