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ABSTRACT
The paper introduces a nonparametric estimator for the regression
function of left truncated and right censored data, achieved through
minimising the mean squared relative error. Under α-mixing condi-
tion, stronguniformconvergence of the estimator is establishedwith
a rate over a compact set. An extensive simulation study is conducted
to assess the estimator’s performance, comparing its efficiency to
that of the classical regression estimator for finite samples across
various scenarios. Moreover, a real world application is presented to
demonstrate the practical utility of the proposed estimator.
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1. Introduction

Let Y be a real random variable (rv) of interest andX a random vector of covariates taking
its values in Rd. The ordinary way to study the relationship between X and Y is based on
the following regression model

Y = m(X)+ ε,

where m(·) is an unknown regression function and ε is a random error variable. Usually,
the regression functionm(·) is obtained by minimising the mean squared error (MSE):

E[(Y − m(X))2 |X].
However, this kind of loss function is very sensitive to outliers. To avoid this problem,
in this work, we use an alternative loss function called the mean squared relative error
(MSRE):

E

[(
Y − m(X)

Y

)2
|X
]
, for Y > 0. (1)

Park and Stefanski (1998) showed that the solution of the minimisation problem of (1) is
explicitly expressed by

m(X) = E[Y−1 |X]
E[Y−2 |X] , (2)
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2 N. BAYARASSOU ET AL.

provided that the first two conditional inverse moments of Y given X are finite almost
surly. They also noted that this MSRE predictor is always smaller than the MSE predictor.
In our study, we focus on the nonparametric approach. In this context, we recall that Jones,
Park, Shin, Vines, and Jeong (2008) gave asymptotic results for bias and variance terms of
an estimator minimising the MSRE by considering both estimation methods: the kernel
method and the local linear approach. Attouch, Laksaci, and Messabihi (2017) established
the almost complete consistency and the asymptotic normality of a kernel estimator of
the relative regression function for spatial data. In the infinite dimensional Demongeot,
Hamie, Laksaci, and Rachdi (2016), proved the strong and uniform consistency of a kernel
estimator and its asymptotic normality.

In survival practical applications where the lifetime is the variable of interest, it is very
common that the generation of data is subject to mechanisms of loss of information such
as censoring and truncation. These two models are completely different from each other
in the sense that a censored subject provides a partial information, while no information is
available to the practitioner when a subject is truncated. The most popular types are right
censoring and left truncation.

For censored data, Bouhadjera, Ould Saïd, and Remita (2019) and Khardani (2020)
introduced a kernel estimator of the regression function minimising the sum of squared
relative errors and they established its uniform convergence and asymptotic normality
for right censored and twice censored data, respectively. Bouhadjera, Ould Saïd, and
Remita (2022) proposed a local linear regression estimator for right censored data and
obtained its uniform almost sure consistency with rate over a compact set.

For truncated data, in the case where the explanatory variable is of functional type, we
mention both works of Altendji, Demongeot, Laksaci, and Rachdi (2018) who established
the almost sure consistency and the asymptotic normality of an estimator of the relative
regression operator for left truncated data, and Bouabsa (2021) who obtained a uniform
consistency with convergence rate of a k Nearest Neighbors relative regression estimator
for left truncated data.

In this contribution, we are interested in survival data that are subject to both left trun-
cation and right censoring (LTRC). This kind of data often arises in medical studies, where
a subject is referred to as left truncated when it is not included in the study because its life-
time origin precedes the starting time of the study, and a subject is called right censored
when it is into the study but its lifetime may not be completely observed due to different
causes: death for a reason unrelated to the study, leaving the study or end of the study period
(for more detailed examples see Chen and Shen 2018). For this type of data, Molanes-
López and Cao (2008) defined a kernel estimator of the relative density. They obtained
its bias, variance and limit distribution. Benseradj and Guessoum (2022) proposed an
M-estimator of regression function and established its strong uniform consistency rate
under α-mixing dependence. Bey, Guessoum, and Tatachak (2022) presented a kernel esti-
mator of the regression function and stated its almost sure uniform convergence rate under
association assumptions.

Most studies addressing LTRC model consider the independent case. However, it is
sometimes interesting to consider dependent samples in order to respond to practical sit-
uations where the data is not independent and identically distributed. Various types of
dependency have been defined in the literature, such as α-mixing, β-mixing, φ-mixing,
ψ-mixing and many more. Among all of those forms, α-mixing which was introduced
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by Rosenblatt (1956) is theweakest and is known to be fulfilled formany stochastic process.
Formore properties of the differentmixing processes, one can refer toDoukhan (1994) and
Bradley (2005).

The paper is organised as follows: in the next section, we present the LTRC model
alongwith relevent notations and definitions. Section 3 introduces the new estimator, while
Section 4 outlines the assumptions and main result. A simulation study is carried out in
Section 5, followed by a real data application in Section 6. In Section 7, we provide the
concluding remarks and discuss potential avenues for future research. Finally, the proofs
are given in the Appendix.

2. LTRCmodel and notations

Let {(Yi,Ti,Wi); i = 1, . . . ,N} be a sequence of random vectors from (Y ,T,W), where Y
denotes the lifetimewith continuous distribution function (df)F.T andW are the variables
of left truncation and right censoring timeswith continuous dfsL andG, respectively. In the
randomLTRCmodel, one observes (Z,T, δ) ifZ ≥ T, whereZ = Y ∧ W and δ = 1{Y≤W},
with ∧ denoting the minimum operator and 1A being the indicator function of the event
A. When Z<T, nothing is observed. All along this paper, we suppose that Y, T and W
are independent of each other, then Z has a df H = 1 − (1 − F)(1 − G). Take α := P

(Z ≥ T), so it is necessary to assume α > 0 in order to have at least one observation avail-
able. As a consequence of truncation, n, the size of the actual sample, is a Bin(N,α) rv, with
n ≤ N and N fixed but not observable. Then without possible confusion, we still denote
{(Zi,Ti, δi); i = 1, . . . , n} the observed sample.

Since N is unknown and n is known, our results would be stated with respect to condi-
tional probability P (related to the n-sample) instead of the probability measure P (related
to the N-sample). Similarly,E and Ewill denote the expectation operators related to P and
P, respectively. More generally, any operator or function related to the probability measure
P will be denoted in bold.

Now, let C(·) be defined by

C(y) := P(T ≤ y ≤ Z)

= P(T ≤ y ≤ Z |Z ≥ T)

= 1
α
L(y)(1 − H(y)), (3)

with the empirical estimator

Cn(y) := 1
n

n∑
i=1

1{Ti≤y≤Zi}.

The nonparametric estimator of the df F is the TJW product-limit estimator Fn, defined
in Tsai, Jewell, and Wang (1987) as

Fn(y) = 1 −
n∏

i=1

(
1 − 1{Zi≤y}δi

nCn(Zi)

)
.
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For any df Q, we define

aQ = inf{y : Q(y) > 0} and bQ = sup{y : Q(y) < 1}
as the endpoints of the Q support. Gijbels and Wang (1993) pointed out that the df F can
be estimated only if

aL ≤ aH and bL ≤ bH . (4)

By the strong law of large numbers, as N → ∞ we have

n
N

−→ α, P- a.s.

Note that, the ratio n
N can not be used to estimate α since N is unknown. Indeed, from (3)

we have

α = L(y)(1 − F(y))(1 − G(y))
C(y)

(5)

and by following the idea of He and Yang (1998), a feasible estimator for α is given by

αn = Ln(y)(1 − Fn(y))(1 − Gn(y))
Cn(y)

, (6)

for any y such that Cn(y) �= 0, where Gn is the concomitant TJW estimator of the df G,
defined as

Gn(y) = 1 −
n∏

i=1

(
1 − 1{Zi≤y}(1 − δi)

nCn(Zi)

)
(7)

and Ln is the Lynden-Bell (1971) estimator of the df L, given by

Ln(y) =
n∏

i=1

(
1 − 1{Ti>y}

nCn(Ti)

)
. (8)

Henceforth, in addition to the triplet (Z,T, δ), assume that covariates are present and
then one observes {(Xi,Zi,Ti, δi); i = 1, . . . , n}, with Zi ≥ Ti. Throughout this paper, we
suppose that condition (4) is satisfied and

(T,W) are independent of (X,Y). (9)

Then, the sub-conditional df of (X,Z, δ = 1) is given by

H1(x, y) := P(X ≤ x,Z ≤ y, δ = 1)

= P(X ≤ x,Z ≤ y, δ = 1 |Z ≥ T)

= 1
α

P(X ≤ x,Y ≤ y,Y ≤ W,Y ≥ T)

= 1
α

∫
Rd

∫ y

aH
L(t)(1 − G(t))fX,Y(u, t) du dt, (10)

where, fX,Y(·, ·) is the joint density function of (X,Y).



JOURNAL OF NONPARAMETRIC STATISTICS 5

By differentiating, (10) becomes

dH1(x, y) = 1
α
L(y)(1 − G(y))fX,Y(x, y). (11)

In the sequel, {(Xi,Zi,Ti, δi); i = 1, . . . , n} is assumed to be an α-mixing sequence of
random vectors. Recall that a sequence {ϑi; i ≥ 1} is said to be α-mixing (strong mixing)
if the mixing coefficient

α(n) = sup{|P(A ∩ B)− P(A)P(B)| : A ∈ Fk
1 and B ∈ F∞

k+n, k ∈ N
∗}

converges to zero as n → ∞, where Fm
l denotes the σ -algebra generated by {ϑj; l ≤

j ≤ m}.

3. Definition of the estimator

The main purpose of this section is to estimate the regression function expressed in (2),
which can be written as

m(x) =
∫

Rd y−1fX,Y(x, y) dy∫
Rd y−2fX,Y(x, y) dy

=:
ψ1(x)
ψ2(x)

, (12)

where

ψ
(x) =
∫

Rd
y−
fX,Y(x, y) dy, for 
 = 1, 2.

As already pointed out in the first section, in the case of complete data, Jones et al. (2008)
constructed an estimator for (2), given by

m̂N(x) =

N∑
i=1

Y−1
i Kd

(
x−Xi
hN

)
N∑
i=1

Y−2
i Kd

(
x−Xi
hN

) , (13)

where Kd : Rd → R is a kernel function and hN is a sequence of positive real numbers
that approaches zero as N → ∞. Note that, the formula in (13) is the direct analogue of
the estimator of Nadaraya (1964) and Watson (1964) in the MSE case. Under the random
right censored model, Bouhadjera et al. (2019) used the so-called synthetic data to define
a kernel estimator of (2) as

m̂(x) =

n∑
i=1

δiZ−1
i

Ḡn(Zi)
Kd

(
x−Xi
hn

)
n∑
i=1

δiZ−2
i

Ḡn(Zi)
Kd

(
x−Xi
hn

) ,

where Ḡn = 1 − Gn is the estimator of the survival function of the censored rvW.
Now, under the random LTRC model, following the idea introduced by Carbonez,

Gyorfi, and Van Der Meulen (1995), an unbiased estimate for E[Y−
 |X], 
 = 1, 2 is
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given by

1
N

N∑
i=1

δiZ−

i

L(Zi)Ḡ(Zi)
1{Zi≥Ti}. (14)

Indeed, using the conditional expectation property and condition (9), we have

E

[
1
N

N∑
i=1

δiZ−

i

L(Zi)Ḡ(Zi)
1{Zi≥Ti}

]
= 1

N

N∑
i=1

E

(
E

[
δiZ−


i
L(Zi)Ḡ(Zi)

1{Zi≥Ti} |Xi,Yi

])

= 1
N

N∑
i=1

E

(
Y−

i

L(Yi)Ḡ(Yi)
E[1{Yi≤Wi}1{Yi≥Ti} |Xi,Yi]

)

= 1
N

N∑
i=1

E[Y−

i |Xi]

= E[Y−
 |X].

Unfortunately, (14) can not be used in practice since N, L and Ḡ are unknown. Therefore,
following the same reasoning as in Ould Saïd and Lemdani (2006), we define m̂n(x) as a
kernel estimator for (2), given for any x ∈ Rd by

m̂n(x) =:
ψ̂1(x)
ψ̂2(x)

, (15)

where

ψ̂
(x) = αn

nhdn

n∑
i=1

δiZ−

i

Ln(Zi)Ḡn(Zi)
Kd

(
x − Xi

hn

)
, for 
 = 1, 2.

4. Assumptions andmain result

In order to formulate the main result, we need to introduce some notations:

ψ̃n(x) = α

nhdn

n∑
i=1

δiZ−

i

L(Zi)Ḡ(Zi)
Kd

(
x − Xi

hn

)
, for 
 = 1, 2

and

μ
(u) =
∫ y

aH

t−2


L(t)Ḡ(t)
fX,Y(u, t) dt, for 
 = 1, 2.

Let C be a compact set inRd and inf
x∈C

ψ̂2(x) > 0. Throughout the paper, when no confusion

is possible, we denote by C any generic constant.

4.1. Assumptions

We will make use of the following assumptions gathered together for easy references.
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K. The kernel K(·) is a bounded probability density with compact support satisfies:
(a)

∫
Rd Kd(r) dr = 1,

∫
Rd riKd(r) dr = 0 and

∫
Rd |ri||rj|Kd(r) dr < ∞, for i, j =

1, . . . , d.
(b)

∫
Rd K2

d(r) dr < ∞ and
∫

Rd riK2
d(r) dr < ∞, for i = 1, . . . , d.

(c) ∀(t, s) ∈ C2 |Kd(t)− Kd(s)| ≤‖ t − s ‖γ , for γ > 0.
H. The bandwidth hn satisfies :

(a) limn→∞ hn = 0, limn→∞ nhdn = ∞ and limn→∞ log n
nhdn

= 0.

(b) limn→∞ hd(v−2)
n log n = 0.

(c) ∃θ > 0, ∃C > 0, such that

Cn
γ (3−v)

γ (v+1)+2γ+1+θd ≤ hdn, for all v > 3 and γ > 0.

D. (a) The functionψ
(·) is twice continuously differentiable and supx∈C | ∂2ψ
(x)
∂xi∂xj | < ∞,

for i, j = 1, . . . , d.
(b) ∀Y > 0, ∃C, such that Y−
 ≤ C, for 
 = 1, 2.
(c) The function μ
(·) is continuously differentiable and supx∈C | ∂μ
(x)

∂xi | < ∞,
for i = 1, . . . , d.

(d) The joint density ϒi,j(·, ·) of (Xi,Xj) exists and satisfies

sup
t,s∈C

|ϒi,j(t, s)− ϒi(t)ϒj(s)| ≤ ∞, for i, j = 1, . . . , n.

4.1.1. Comments on the assumptions
Assumptions K, H(a), and D(a) are commonly used in nonparametric regression estima-
tion in both independent and dependent cases. Assumption D(b) implies that the inverse
of the variable of interestY is bounded, which is specifically useful for proving LemmasA.2
and A.3. Assumptions H(b), H(c), D(c), and D(d) are technical and are necessary for
studying the covariance term.

4.2. Main result

The following theorem presents the uniform almost sure convergence with a rate, of the
relative error regression (RER) estimator defined in (15).

Theorem 4.1: Under Assumptions K, H, and D, we have

sup
x∈C

|m̂n(x)− m(x)| = O(h2n)+ O

(√
log n
nhdn

+
√
hd(v−2)
n log n

)
P− a.s. as n → ∞.

The proof of the theorem is postponed in the Appendix.

5. Simulation study

To show how good our estimator m̂n(·) is, a simulation study is performed for some par-
ticular cases of fixed size and different censoring, truncation and dependency rates, when
the covariate X is one- and bi-dimensional rv (i.e. d=1 and d=2).
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5.1. One-dimensional case

5.1.1. Algorithm
(1) Generate an α-mixing sequence {Xt ; t ≥ 1} by the following AR(1) model

Xt+1 =
{
ρXt + 0.5et+1, if ρ > 0.5
ρXt + et+1, else,

where 0 < ρ < 1 controls the degree of dependency, X1 = e1 and et � N(0, 1).
(2) Calculate Yt = m(Xt)+ εt , t ≥ 1, where the white noise εt � N(0, 0.1).
(3) Determine Zt = Yt ∧ Wt and δt = 1{Yt≤Wt}, t ≥ 1, where Wt is generated accord-

ing to a exponential distribution with parameter a0 which allows obtaining different
censoring percentage (CP).

(4) Generate Tt = ρTt−1 + b0 + ξt , t ≥ 2, where T1 = ξ1, ξt � N(0, 0.1) for t ≥ 1 and
b0 is adapted to achieve different truncation percentage (TP).

(5) Test if Zt ≥ Tt , t ≥ 1. If true, the vector (Xt ,Zt ,Tt , δt) is included in the final sample.
Otherwise, reject the observation (Xt ,Zt ,Tt , δt) and go back to step 1.

(6) Repeat this procedure until the final simple size is n, i.e. (Xi,Zi,Ti, δi); i = 1, . . . , n.
(7) Compute Ḡn(·) and Ln(·) from (7) and (8), respectively.
(8) Calculate the estimator m̂n(x) from (15) for x ∈ C = [−1.5, 1.5]. The kernel K(.)

is taken as a standard normal function. The choice of the bandwidth is discussed
immediately afterward.

5.1.2. Bandwidth selection
The bandwidth hn is chosen as the minimiser of the global mean squared error (GMSE)
criterion. We select this bandwidth from a grid of values denoted asH. For each candidate
bandwidth value hn ∈ H, we perform the following steps.

• Compute the MSE for the estimator m̂n(.) at the equidistant points (xi, i = 1, . . . ,A =
20) belonging to the compact set C. TheMSE is calculated along B = 50 replications by

MSE(xi) = 1
B

B∑
j=1
(m̂n,j(xi)− m(xi))2, i = 1, . . . ,A.

Here m̂n,j(·) is the value of the estimator m̂n(·) at iteration j.
• Compute the GMSE by

GMSE(hn) = 1
A

A∑
i=1

MSE(xi). (16)

Finally, the optimal bandwidth is determined by

argmin
hn∈H

GMSE(hn).

5.1.3. Performance of the estimator m̂n(·)
In this part, we study the performance of our estimator when the theoretical function is of
linear and nonlinear form.
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Figure 1. m(·) and m̂n(·)with ρ = 0.1, CP = 20%, TP = 20%, n = 50, 100, and 300 respectively.

Figure 2. m(·) and m̂n(·)with n = 300, CP = 20%, TP = 20%, ρ = 0.1, 0.5 and, 0.8 respectively.

Figure 3. m(·) and m̂n(·)with ρ = 0.1, n = 300, TP = 20%, CP = 10%, 30%, and 60% respectively.

(1) Linear case
We consider the following linear regression function m(x) = x + 5, then Yi = Xi +
5 + εi, i = 1, . . . , n.
(a) Effect of sample size and dependency: From Figures 1 and 2 when CP and TP are

fixed,we notice that the higher the sample size and smaller the rate of dependency,
the better the quality of fit.

(b) Effect of CP and TP: It is easy to see from Figure 3 that the estimator’s quality
is affected by CP, whereas it does not seem to be influenced by TP, as shown in
Figure 4. In general, our estimator curve remains close to the theoretical curve
even for a high CP.

(c) Effect of outliers: To show the robustness of our estimator, we create artificial
outliers in the data; 4% of each sample is multiplied by a multiplier factor (MF).
Then, from Figure 5, it is very clear that our estimator is resistant in the presence
of outliers.

(2) Nonlinear case
Now, we consider the case of nonlinear regression by choosing the following three
models
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Figure 4. m(·) and m̂n(·)with ρ = 0.1, n = 300, CP = 20%, TP = 10%, 30%, and 60% respectively.

Figure 5. m(·) and m̂n(·)withρ = 0.1, n = 300, CP = 20%, TP = 20%,MF = 50, 100, and 150 respec-
tively.

Model 1:

Y = m1(X)+ ε, withm1(x) = exp(x)+ 3,

Model 2:

Y = m2(X)+ ε, withm2(x) = sin(2x)+ 4,

Model 3:

Y = m3(X)+ ε, withm3(x) = x2 + 5.

Figure 6 shows that the quality of fit for the nonlinear model is as good as for linear
model.

5.1.4. Comparison study
Here, the goal is to compare the performance of the RER estimator with the classical
regression (CR) estimator studied by Bey et al. (2022) and defined as

m̂NW(x) =

n∑
i=1

δiZi
Ln(Zi)Ḡn(Zi)

Kd

(
x−Xi
hn

)
n∑
i=1

δi
Ln(Zi)Ḡn(Zi)

Kd

(
x−Xi
hn

) ,
in absence and presence of outliers. The performance of both estimators is evaluated
via some graphic curves and the GMSE criterion under the linear regression function
described in the one-dimensional case.

For the first case when there are no outliers in the observed samples, we can see from
Figure 7 and Table 1 that there is no meaningful difference between the estimators m̂n(·)
and m̂NW(·) and both of them share the following points
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Figure 6. m(·) and m̂n(·) with ρ = 0.1, n = 300, CP = 20% and TP = 20% for model 1, 2 and, 3
respectively.

Figure 7. m(·), m̂n(·) and m̂NW(·) with ρ = 0.1, CP = 20%, TP = 20%, n = 50, 100, and 300 respec-
tively.

Table 1. GMSE’s values of m̂n(·) and m̂NW(·).
CP = 20% TP = 20%

TP = 10% TP = 40% CP = 10% CP = 40%

ρ n m̂n m̂NW m̂n m̂NW m̂n m̂NW m̂n m̂NW

0.1 100 0.00228 0.00231 0.00234 0.00237 0.00203 0.00231 0.00417 0.00437
300 0.00118 0.00105 0.00127 0.00116 0.00088 0.00091 0.00152 0.00150

0.8 100 0.00347 0.00325 0.00382 0.00333 0.00289 0.00250 0.00632 0.00594
300 0.00181 0.00162 0.00224 0.00243 0.00095 0.00111 0.00217 0.00208

• The quality of fit becomes better when the sample size n increases.
• The estimator is affected by the degree of dependency and performs better for a

small ρ.
• The accuracy of the estimator is influenced by CP and decreases with increasing CP,

however it remains acceptable.
• The quality of estimation is slightly affected by TP for a small size of n, but this effect

disappears with increasing sample size.

In the second case, we compare the estimators m̂n(·) and m̂NW(·) in the presence of out-
liers. For this purpose, we artificially introduce outliers by multiplying 4 % of each sample
by a MF. As illustrated in Figure 8 and Table 2, the RER estimator is more stable than the
CR estimator. This means that even if the quality of the estimation for both estimators
decreases with increasing outliers, but this decrease in the quality is still not significant in
the relative error regression compared to the classical one.
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Figure 8. m(·), m̂n(·) and m̂NW(·) with n = 300, ρ = 0.1, CP = 20%, TP = 20%, MF = 50, 100, and
150 respectively.

Table 2. GMSE’s values of m̂n(·) and m̂NW(·)with outliers for ρ = 0.1.

CP = 20% TP = 20%

TP = 10% TP = 40% CP = 10% CP = 40%

n MF m̂n m̂NW m̂n m̂NW m̂n m̂NW m̂n m̂NW

50 0.00245 3.11207×102 0.00266 4.18845×102 0.00237 2.48798×102 0.00463 5.62563×102

100 100 0.00316 1.52516×103 0.00358 1.92048×103 0.00263 1.00017×103 0.00549 2.53366×103

150 0.00341 2.43604×103 0.00372 2.81923×103 0.00314 2.16226×103 0.00523 3.32406×103

50 0.00107 2.30381×102 0.00107 3.05945×102 0.00092 2.26077×102 0.00164 4.51992×102

300 100 0.00121 9.30793×102 0.00132 1.17058×103 0.00102 1.39562×103 0.00183 1.92666×103

150 0.00131 1.63935×103 0.00134 1.92157×103 0.00116 1.70041×103 0.00193 2.48458×103

5.2. Bi-dimensional case

In this second subsection, the aim is to study the performance of our estimator in the case
of a bi-dimensional covariate under the following two models
Model 1:

Y = m1(X1,X2)+ ε, withm1(x1, x2) = x1 + x2 + 5,

Model 2:

Y = m2(X1,X2)+ ε, withm2(x1, x2) = cos(2x1)+ cos(2x2)+ 4.

The data is generated using the same algorithm as for the one-dimensional case. In each
model, We simulate (X1,t ,X2,t), t ≥ 1 as follows

Xj,t+1
j=1,2

=
{
ρXj,t + 0.5ej,t+1, if ρ > 0.5
ρXj,t + ej,t+1, else,

where Xj,1 = ej,1 and ej,t � N(0, 1). Then, we calculate Yt = m(X1,t ,X2,t)+ εt , t ≥ 1.
To compute the estimator m̂n(·, ·), we use a standard multivariate normal kernel and a
bandwidth that minimises the GMSE defined in (16).

The results are presented in the following figures and tables. In general, the same com-
ments that we gave in the one-dimensional case can be given here. More clearly, in the
absence of outliers, we observe from Figures 9 and 10 (Model 1), Figure 11 (Model 2) and
Table 3 that the estimators m̂n(·) and m̂NW(·) are almost equivalent and the quality of esti-
mation for both of thembecomes better for a large sample size and a small rate of censoring,
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Figure 9. True surface for Model 1 with ρ = 0.1, n = 300, CP = 20%, and TP = 20%.

Figure 10. RER surface for Model 1 with ρ = 0.1, CP = 20%, TP = 20%, n = 50, 100, and 300 respec-
tively.

Table 3. GMSE’s values of m̂n(·, ·) and m̂NW(·, ·).
CP = 20% TP = 20%

TP = 10% TP = 40% CP = 10% CP = 40%

ρ n m̂n m̂NW m̂n m̂NW m̂n m̂NW m̂n m̂NW

0.1 100 0.06396 0.05726 0.11919 0.127636 0.05124 0.05513 0.09572 0.08368
300 0.03566 0.03014 0.05049 0.05647 0.02567 0.02306 0.04346 0.04104

0.8 100 0.08249 0.09146 0.16514 0.15514 0.06196 0.07313 0.15381 0.14740
300 0.05667 0.05126 0.07682 0.07011 0.04590 0.04653 0.06998 0.06332

truncation and dependency. However, in the presence of outliers, the RER estimator per-
forms better than the CR estimator in all cases, as confirmed by Table 4. To conclude, the
quality of fit for our estimator is good but better in the one-dimensional case.
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Figure 11. True and RER surfaces for Model 2 with ρ = 0.1, n = 300, CP = 20%, and TP = 20%.

Table 4. GMSE’s values of m̂n(·, ·) and m̂NW(·, ·)with outliers for ρ = 0.1.

CP = 20% TP = 20%

TP = 10% TP = 40% CP = 10% CP = 40%

n MF m̂n m̂NW m̂n m̂NW m̂n m̂NW m̂n m̂NW

50 0.07123 7.81493×102 0.11381 1.38425×103 0.05571 6.68271×102 0.10518 9.13577×102

100 100 0.06744 2.64428×103 0.12730 4.41663×103 0.06166 2.11341×103 0.14459 3.78598×103

150 0.07783 4.03922×103 0.12358 5.27606×103 0.06310 3.43390×103 0.13849 4.54624×103

50 0.03231 5.48369×102 0.05916 8.24651×102 0.02884 3.85714×102 0.04664 7.21458×102

300 100 0.04076 2.02754×103 0.06805 3.68605×103 0.02610 1.77065×103 0.04454 3.22474×103

150 0.03820 3.88562×103 0.06333 4.77619×103 0.02784 2.04465×103 0.05414 4.03390×103

6. Real data application

In this section, we present a real data application where we assess the effectiveness of
the RER estimator in the context of dependent data that is left truncated and right cen-
sored. The dataset used in our analysis contains information about patients diagnosed with
AIDS in Australia before 1st July 1991, and it was obtained from Dr. Patty Solomon. For
more detailed information about the dataset, we recommend consulting (Venables and
Ripley 2002).

The study focuses on patients who survived at least one year after diagnosis, comprising
a total of 1276 individuals. The dataset includes various factors such as the dates of diag-
nosis, the dates of death, patients gender, age at diagnosis, survival status at the end of the
study, as well as the state and transmission category they belong to.

Our main interest lies in analysing the time to diagnosis and time to death. Upon exam-
ining the relationships within the data, we found a strong correlation (0.75) between these
two factors, indicating their interdependence. Furthermore, the partial correlation plot
suggests that our data follows an autoregressive process of order greater than 1.

Tomake predictions, we divided the dataset into two parts: 80% of the data served as the
learning sample to calculate the estimator, while the remaining 20% formed the test sample
to evaluate the predictions quality. We utilised the standard gaussian kernel function and
employed the cross-validationmethod to determine the optimal bandwidth. It is important
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Figure 12. Scatter plot of time to diagnosis and time to death: censored vs. uncensored observations
with true and RER predicted values for AIDS patients.

to note that around 43% of the data was censored. Therefore, we excluded the censored
data from the predicted values since it has no meaning to predict the survival time for
such observations.

Figure 12 provides visual representations of our analysis. On the left-hand side of the
figure, a scatter plot of the data is shown, distinguishing between censored and uncensored
observations. On the right-hand side, the true and RER predicted values are displayed. It
can be observed that the majority of the RER predicted values are close to the true values,
demonstrating the robustness of our method and the accuracy of our predictor.

7. Conclusion

In this paper, our focus is on estimating the relative regression function under left trun-
cation and right censoring using a nonparametric approach. We propose a kernel type
estimator that minimises the mean squared relative error and establish its strong uniform
convergence, along with the corresponding rate under α-mixing condition. Furthermore,
we evaluate the practical effectiveness of our estimator through both finite sample analy-
sis and a real data application. The results demonstrated the favourable performance of the
proposedmethodology. As a direction for future research, it would be interesting to extend
our work to the case where the covariable exhibits a functional nature.
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Appendix. Proofs

From (12) and (15), we have the following classical decomposition

m̂n(x)− m(x)

= ψ̂1(x)
ψ̂2(x)

− ψ1(x)
ψ2(x)

= 1
ψ̂2(x)

{[
ψ̂1(x)− ψ1(x)

]− m(x)
[
ψ̂2(x)− ψ2(x)

]}
= 1
ψ̂2(x)

{[
(ψ̂1(x)− ψ̃1(x))+ (ψ̃1(x)− E[ψ̃1(x)])+ (E[ψ̃1(x)] − ψ1(x))

]
− m(x)

[
(ψ̂2(x)− ψ̃2(x))+ (ψ̃2(x)− E[ψ̃2(x)])+ (E[ψ̃2(x)] − ψ2(x))

]}
=:

1
ψ̂2(x)

{[
�1,1(x)+�2,1(x)+�3,1(x)

]− m(x)
[
�1,2(x)+�2,2(x)+�3,2(x)

]}
. (A1)

In order to prove Theorem 4.1, some auxiliary results are needed and will be introduced in
Lemmas A.1–A.3 hereafter.

Lemma A.1: Under Assumptions K(a) and D(a), we have for 
 = 1, 2

sup
x∈C

|�3,
(x)| = Oa.s.(h2n) as n → ∞.

Proof: We have

|�3,
(x)| =
∣∣∣∣∣E
[
α

nhdn

n∑
i=1

δiZ−

i

L(Zi)(1 − G(Zi))
Kd

(
x − Xi

hn

)]
− ψ
(x)

∣∣∣∣∣
=
∣∣∣∣∣E
[
α

hdn

δ1Z−

1

L(Z1)(1 − G(Z1))
Kd

(
x − X1

hn

)]
− ψ
(x)

∣∣∣∣∣ . (A2)

From (11) and using a change of variable, we get

E

[
α

hdn

δ1Z−

1

L(Z1)(1 − G(Z1))
Kd

(
x − X1

hn

)]

=
∫

Rd

∫ y

aH

αt−


hdnL(t)(1 − G(t))
Kd

(
x − u
hn

)
dH1(u, t)

=
∫

Rd

∫ y

aH

1
hdn

t−
Kd

(
x − u
hn

)
fX,Y(u, t) du dt

=
∫

Rd

1
hdn

Kd

(
x − u
hn

)
ψ
(u) du

=
∫

Rd
Kd(r)ψ
(x − rhn) dr.
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So, (A2) becomes ∣∣∣∣∣E
[
α

hdn

δ1Z−

1

L(Z1)(1 − G(Z1))
Kd

(
x − X1

hn

)]
− ψ
(x)

∣∣∣∣∣
=
∣∣∣∣∫

Rd
Kd(r)ψ
(x − rhn) dr − ψ
(x)

∣∣∣∣
=
∣∣∣∣∫

Rd
Kd(r) [ψ
(x − rhn)− ψ
(x)] dr

∣∣∣∣ .
A Taylor expansion around x gives

ψ
(x − rhn)− ψ
(x) = −hn
d∑

i=1
ri
∂ψ
(x)
∂xi

+ h2n
2

⎧⎨⎩
d∑

i=1
r2i
∂2ψ
(x0)
∂x2i

+ 2
d∑

i=1

d∑
j=1

rirj
∂2ψ
(x0)
∂xi∂xj

⎫⎬⎭ ,

when x0 is between x − rhn and x. Then

sup
x∈C

|�3,
(x)| = sup
x∈C

∣∣∣∣∫
Rd

Kd(r) [ψ
(x − rhn)− ψ
(x)] dr
∣∣∣∣

= sup
x∈C

∣∣∣∣∣
∫

Rd
Kd(r)

[
−hn

d∑
i=1

ri
∂ψ
(x)
∂xi

+ h2n
2

{ d∑
i=1

r2i
∂2ψ
(x0)
∂x2i

+2
d∑

i=1

d∑
j=1

rirj
∂2ψ
(x0)
∂xi∂xj

⎫⎬⎭
⎤⎦ dr

∣∣∣∣∣∣
≤ h2n

2

{ d∑
i=1

sup
x∈C

∣∣∣∣∂2ψ
(x0)∂x2i

∣∣∣∣ ∫
Rd

r2i Kd(r) dr

+2
d∑

i=1

d∑
j=1

sup
x∈C

∣∣∣∣∂2ψ
(x0)∂xi∂xj

∣∣∣∣ ∫
Rd

|ri||rj|Kd(r) dr

⎫⎬⎭ .

Assumptions K(a) and D(a) complete the proof of the lemma. �

Lemma A.2: Under Assumptions K(a)–K(c), H(c), and D(a)–D(d), we have for 
 = 1, 2

sup
x∈C

|�2,
(x)| = Oa.s.

(√
log n
nhdn

+
√
hd(v−2)
n log n

)
as n → ∞.

Proof: Since C is a compact set, then it can be covered by a finite number ωn of balls Bk(xk, adn)
centred at xk = (x1,k, . . . , xd,k), 1 ≤ k ≤ ωn, where ωn and adn satisfy

ωn ≤ Ma−d
n and adn = h

d(1+ 1
2γ )

n n− 1
2γ ,

withM is a positive constant and γ is the Lipschitz condition inAssumptionK(c). Then for all x ∈ C,
there exists a ball Bk that contains x such that

‖ x − xk ‖≤ adn. (A3)

For 
 = 1, 2, we have

sup
x∈C

∣∣�2,
(x)
∣∣



JOURNAL OF NONPARAMETRIC STATISTICS 19

= sup
x∈C

∣∣(ψ̃
(x)− ψ̃
(xk))+ (E[ψ̃
(xk)] − E[ψ̃
(x)])+ (ψ̃
(xk)− E[ψ̃
(xk)])
∣∣

≤ max
1≤k≤ωn

sup
x∈C

∣∣ψ̃
(x)− ψ̃
(xk)
∣∣+ max

1≤k≤ωn
sup
x∈C

∣∣E[ψ̃
(xk)] − E[ψ̃
(x)]
∣∣

+ max
1≤k≤ωn

∣∣ψ̃
(xk)− E[ψ̃
(xk)]
∣∣

=: I1 + I2 + I3.

We start by treating the first term I1. Under Assumptions D(a) and K(c), we have

∣∣ψ̃
(x)− ψ̃
(xk)
∣∣ =

∣∣∣∣∣ αnhdn
n∑

i=1

δiZ−

i

L(Zi) ¯G(Zi)

[
Kd

(
x − Xi

hn

)
− Kd

(
xk − Xi

hn

)]∣∣∣∣∣
=
∣∣∣∣∣ αnhdn

n∑
i=1

Y−

i

L(Yi)Ḡ(Yi)

[
Kd

(
x − Xi

hn

)
− Kd

(
xk − Xi

hn

)]∣∣∣∣∣
≤ C

nhdnL(aH)Ḡ(bH)

n∑
i=1

∣∣∣∣Kd

(
x − Xi

hn

)
− Kd

(
xk − Xi

hn

)∣∣∣∣
≤ C

hdnL(aH)Ḡ(bH)

∣∣∣∣∣∣∣∣x − X1

hn
− xk − X1

hn

∣∣∣∣∣∣∣∣γ
≤ C ‖ x − xk ‖γ

hd+γn
.

Then, from (A3), we get

sup
x∈C

∣∣ψ̃
(x)− ψ̃
(xk)
∣∣ ≤ Cadγn

hd+γn
= C√

nhdn
hγ (d−1)
n .

Hence,

I1 = max
1≤k≤ωn

sup
x∈C

∣∣ψ̃
(x)− ψ̃
(xk)
∣∣ = O

⎛⎝ 1√
nhdn

⎞⎠ .

In the same way as for I1, we obtain

I2 = max
1≤k≤ωn

sup
x∈C

∣∣E[ψ̃
(x)] − E[ψ̃
(xk)]
∣∣ = O

⎛⎝ 1√
nhdn

⎞⎠ .

For I3, we use the Fuk-Nagaev exponential inequality (Ferraty and Vieu 2006), which states that if
{Ui, i ≥ 1} is a sequence of rvs, with strong mixing coefficient α(n) = O(n−v), where v> 1, and for
all n ∈ N and i ∈ N, 1 ≤ i ≤ n, |Ui| < ∞, then for each ε > 0 and q> 1, we have

P

{∣∣∣∣∣
n∑

i=1
Ui

∣∣∣∣∣ > ε

}
≤ C

(
1 + ε2

qS2n

)− q
2

+ nCq−1
(q
ε

)v+1
, (A4)

where S2n =
n∑
i=1

n∑
j=1

|Cov(Ui,Uj)|.
For that, we set

Ui,
(xk) = αZ−

i δi

L(Zi)Ḡ(Zi)
Kd

(
xk − Xi

hn

)
− E

[
αZ−


1 δ1

L(Z1)Ḡ(Z1)
Kd

(
xk − X1

hn

)]
, for 
 = 1, 2.
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Clearly, we have

�2,
(xk) = 1
nhdn

n∑
i=1

U
,i(xk).

Now, we have to calculate

S2n =
n∑
i=1

n∑
j=1

|Cov(Ui,
(xk),Uj,
(xk))|

= nVar(U1,
(xk))+
n∑
i=1

n∑
j=1

i�=j

|Cov(Ui,
(xk),Uj,
(xk))|

=: CV1 + CV2.

On the one hand, we have

Var(U1,
(xk))

= Var

[
α1Z−


1 δ1

L(Z1)Ḡ(Z1)
Kd

(
xk − X1

hn

)]

= E

[
α2Z−2


1 δ1
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d
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hn
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[
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1 δ1

L(Z1)Ḡ(Z1)
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(
xk − X1

hn

)]
=: R1 − R2.

From (11) and using a change of variable, a Taylor expansion and under AssumptionsK(b) andD(c),
we obtain

R1 = E

[
α2Z−2


1 δ1

L2(Z1)Ḡ2(Z1)
K2
d

(
xk − X1

hn

)]

=
∫

Rd

∫ y

aH

α2t−2


L2(t)Ḡ2(t)
K2
d

(
xk − u
hn

)
dH1(u, t)

=
∫

Rd

∫ y

aH

αt−2


L(t)Ḡ(t)
K2
d

(
xk − u
hn

)
fX,Y(u, t) du dt

≤
∫

Rd
K2
d

(
xk − u
hn

)
μ
(u) du

= hdn

∫
Rd

K2
d(s)μ
(xk − shn) ds

= O(hdn). (A5)

ForR2, we have √
R2 = E

[
αZ−


1 δ1

L(Z1)Ḡ(Z1)
Kd

(
xk − X1

hn

)]

=
∫

Rd

∫ y

aH

αt−


L(t)Ḡ(t)
Kd

(
xk − u
hn

)
dH1(u, t)

=
∫

Rd

∫ y

aH
t−
Kd

(
xk − u
hn

)
fX,Y(u, t) du dt
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=
∫

Rd
Kd

(
xk − u
hn

)
ψ
(u) du

= hdn

∫
Rd

Kd(s)ψ
(xk − shn) ds,

by a Taylor expansion around xk and under Assumptions K(a),D(a), we get

R2 = O(h2dn ). (A6)

Then, from (A5) and (A6), we obtain

CV1 = n(R1 − R2) = O(nhdn). (A7)

On the other hand, under Assumption D(b) and by a change of variable, we have

|Cov(Ui,
(xk),Uj,
(xk))|
= |E(Ui,
(xk)Uj,
(xk))|

=
∣∣∣∣∣E
[

αZ−

i δi

L(Zi)Ḡ(Zi)
Kd

(
xk − Xi

hn

)
αZ−


j δj

L(Zj)Ḡ(Zj)
Kd

(
xk − Xj

hn

)]

− E

[
αZ−


i δi

L(Zi)Ḡ(Zi)
Kd

(
xk − Xi

hn

)]
E

[
αZ−


j δj

L(Zj)Ḡ(Zj)
Kd

(
xk − Xj

hn

)]∣∣∣∣∣
≤ Ch2dn

∫
Rd

∫
Rd

Kd(s)Kd(t)|ϒij(xk − shn, xk − thn)

−ϒi(xk − shn)ϒj(xk − thn)| ds dt.
Assumption D(d) gives

|Cov(Ui,
(xk),Uj,
(xk))| = O(h2dn ). (A8)

Then, to evaluate the term CV2, following Masry (1986), we divide the set {(i, j)/1 ≤ |i − j| ≤ n}
into two sub-sets E1 and E2 by introducing a sequence of integer βn = o(n), such that

E1 = {(i, j)/1 ≤ |i − j| ≤ βn} and E2 = {(i, j)/βn + 1 ≤ |i − j| ≤ n − 1}.
That is

CV2 =
n∑

i=1

∑
j∈E1

|Cov(Ui,
(xk),Uj,
(xk))| +
n∑
i=1

∑
j∈E2

|Cov(Ui,
(xk),Uj,
(xk))|

=: CV21 + CV22.

From (A8), we get

CV21 =
n∑

i=1

∑
j∈E1

|Cov(Ui,
(xk),Uj,
(xk))| = C
n∑

i=1

∑
1≤|i−j|≤βn

h2dn = O(nh2dn βn).

ForCV22, we use themodified inequality of Davydov formixing processes (see Rio 2000). This leads,
for all i �= j, to

|Cov(Ui,
(xk),Uj,
(xk))| ≤ Cα(|i − j|).
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Then, we get

CV22 =
n∑
i=1

∑
j∈E2

|Cov(Ui,
(xk),Uj,
(xk))| ≤ C
n∑

i=1

∑
βn<|i−j|<n

α(|i − j|)

≤ Cn2α(βn)

= O(n2β−v
n ).

By choosing βn = [h−d
n ], we obtain

CV2 = CV21 + CV22 = O(nhdn)+ O(n2hdvn ). (A9)

Finally, from (A7) and (A9), we get

S2n = CV1 + CV2 = O(nhdn)+ O(n2hdvn ).

Now, we are ready to apply the Fuk-Nagaev exponential inequality given in (A4). For ε > 0, we have

P{|ψ̃
(xk)− E[ψ̃
(xk)]| > ε}

= P

{∣∣∣∣∣
n∑

i=1
Ui,
(xk)

∣∣∣∣∣ > nhdnε

}

≤ C

(
1 + C

ε2nhdn
q(1 + nhd(v−1)

n )

)− q
2

+ nCq−1
(

q
εnhdn

)v+1
. (A10)

By taking ε = ε0(

√
log n
nhdn

+
√
hd(v−2)
n log n) =: εn for all ε0 > 0, (A10) becomes

P{|ψ̃
(xk)− E[ψ̃
(xk)]| > εn}

≤ C

⎧⎪⎪⎨⎪⎪⎩
(
1 + C

ε20 log n
q

)− q
2

+ nq−1

⎛⎜⎜⎝ q

ε0

(√
log n
nhdn

+
√
hd(v−2)
n log n

)
nhdn

⎞⎟⎟⎠
v+1⎫⎪⎪⎬⎪⎪⎭

=: C(ε1 + ε2).

If we replace q by (log n)1+b, with b> 0 and use a Taylor expansion of log(1 + x), we get

ε1 = (1 + Cε20(log n)
−b)−

(log n)1+b
2

= exp

(
− (log n)

1+b

2
log(1 + Cε20(log n)

−b)

)

� n−C
ε20
2 .

For the same choice of ε and q, we have

ε2 � n(log n)v(1+b)ε
−(v+1)
0 (nhdn log n)

− (v+1)
2 .

Now, we can write

P
{

max
1≤k≤ωn

|ψ̃
(xk)− E[ψ̃
(xk)]| > εn

}

≤
ωn∑
i=1

P{|ψ̃
(xk)− E[ψ̃
(xk)]| > εn}
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≤ Ma−d
n

{
Cn−C

ε20
2 + n(log n)v(1+b)ε

−(v+1)
0 (nhdn log n)

− (v+1)
2

}
≤ MCh

−d(1+ 1
2γ )

n n
1
2γ −C

ε20
2

+ MCε−(v+1)
0 n1+

1
2γ h

−d(1+ 1
2γ )

n (log n)v(1+b)(nhdn log n)
− v+1

2

=: MCA1 + MCε−(v+1)
0 A2. (A11)

We have from AssumptionH(c)

A2 = (log n)v(1+b)− v+1
2 n1−

v+1
2 + 1

2γ h
−d
(
1+ 1

2γ + v+1
2

)
n

≤ C(log n)v(1+b)− v+1
2 n1−

v+1
2 + 1

2γ n− (3−v)
2 −θd

(
γ (v+1)+2γ+1

2γ

)

= C(log n)v(1+b)− v+1
2 n−1+ 1−θd(γ (v+3)+1)

2γ .

Then, for an appropriate choice of ε0 and θ , A1 and A2 are the general terms of a convergent series.
Finally, applying Borel-Cantelli’s lemma to (A11) gives the result. �

Lemma A.3: Under Assumptions K, H(a), and D(b), we have for 
 = 1, 2

sup
x∈C

|�1,
(x)| = Oa.s.

(√
log log n

n

)
as n → ∞.

Proof: We have

�1,
(x) = 1
nhdn

n∑
i=1

(
αnZ−


i δi

Ln(Zi) ¯Gn(Zi)
Kd

(
x − Xi

hn

)
− αZ−


i δi

L(Zi) ¯G(Zi)
Kd

(
x − Xi

hn

))

= 1
nhdn

n∑
i=1

Y−

i Kd

(
x − Xi

hn

)(
αn

Ln(Zi)Ḡn(Zi)
− α

L(Zi)Ḡ(Zi)

)
.

By replacing α and αn, by their expressions defined in (5) and (6), respectively, we get

sup
x∈C

|�1,
(x)| ≤ sup
aH≤t≤bH

∣∣∣∣ F̄n(t)Cn(t)
− F̄(t)

C(t)

∣∣∣∣× sup
x∈C

∣∣∣∣∣ 1
nhdn

n∑
i=1

Y−

i Kd

(
x − Xi

hn

)∣∣∣∣∣
≤
{

sup
aH≤t≤bH

∣∣∣∣Fn(t)− F(t)
Cn(t)

∣∣∣∣+ sup
aH≤t≤bH

∣∣∣∣ F̄(t)
Cn(t)C(t)

(Cn(t)− C(t))
∣∣∣∣
}

× sup
x∈C

∣∣∣∣∣ 1
nhdn

n∑
i=1

Y−

i Kd

(
x − Xi

hn

)∣∣∣∣∣
≤

⎧⎪⎨⎪⎩
sup

aH≤t≤bH
|Fn(t)− F(t)|

inf
aH≤t≤bH

|C(t)| − sup
aH≤t≤bH

|(Cn(t)− C(t))|

+
sup

aH≤t≤bH
|(Cn(t)− C(t))|

inf
aH≤t≤bH

|C(t)|
(

inf
aH≤t≤bH

|C(t)| − sup
aH≤t≤bH

|(Cn(t)− C(t))|
)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
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× sup
x∈C

∣∣∣∣∣ 1
nhdn

n∑
i=1

Y−

i Kd

(
x − Xi

hn

)∣∣∣∣∣ .
From (3), we have C(t) ≥ α−1L(aH)H̄(bH) > 0 for all aH ≤ t ≤ bH , and following Chen and
Dai (2003), we have

sup
aH≤t≤bH

|Fn(t)− F(t)| = Oa.s.

(√
log log n

n

)
as n → ∞

and

sup
aH≤t≤bH

|Cn(t)− C(t)| = Oa.s.

(√
log log n

n

)
as n → ∞.

Furthermore, under Assumptions K,H(a) and D(b) we get the result. �

Proof of Theorem 4.1: By triangle inequality, (A1) becomes

sup
x∈C

|m̂n(x)− m(x)| ≤ 1
inf
x∈C

|ψ̂2(x)|
{
sup
x∈C

[|�1,1(x)| + |�2,1(x)| + |�3,1(x)|
]

+ sup
x∈C

|m(x)| [|�1,2(x)| + |�2,2(x)| + |�3,2(x)|
]}

.

Then, the proof of Theorem 4.1 is completed by Lemmas A.1–A.3. �
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